资源资源简介:
2017年中考数学复习《二次函数的应用》课件+教案二次函数的应用复习(1课时)1. 知识目标结合具体情境体会二次函数的意义,能够通过二次函数的性质,解决二次函数的最值问题;通过情境问题确定二次函数的表达式,并能解决简单的实际问题。2.能力目标通过对典型例题的分析解答,培养学生分析问题和解决问题的能力;让学生体会数形结合思想,感受数学的应用价值。3.课标要求:①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。④会根据二次函数的性质解决简单的实际问题。4。考试内容:运用二次函数的有关知识解决实际问题,是中考的热点之一,例如求销售利润的最值问题、几何图形变换中建立函数关系式的问题、以抛物线形为基础的实际问题都需要在实际的情景中去理解、分析所给的一系列数据,舍弃与解题无关的因素,建立数学模型。5.课标分解(1)能描述二次函数的特征和由来;能明确地阐述二次函数与有关对象之间的区别和联系。(2)能在理解的基础上,把二次函数的图像及性质运用到新的情境中。(3)在具体情境中了解认识二次函数的特征,获得解决问题的经验。教学过程:(1)基础演练:复习旧知识的目的是对学生新课应具备的"认知前提能力"和"情感前提特征进行检测判断"。1、已知二次函数的图象过点(1,4),且与x轴交点为(-1,0)和(3,0),求此函数的解析式。2、已知二次函数为x=4时有最小值-3且它的图象与x轴交点的横坐标为1,求此二次函数解析式.3、某喷灌设备的喷头B高出地面1.4m,如果喷出的抛物线形水流的水平距离x(m)与高度y(m)之间的关系式为二次函数y=a(x-4)2+3,求水流落地点D与喷头底产部A的距离。(精确到0.1m)4、在一场足球比赛中,有一个球员从球门正前方10米处将球踢出球门,当球飞行的水平距离为6米时,球到达最高点,此时球高3米,已知球门廁2.44米,问该球员能否射中球门?学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。(2)灵活运用自主探究:一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,(1)根据题意建立直角坐标系,并求出抛物线的解析式。(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?本题涉及用一般式二次函数求实际问题的解析式,二次函数的平移性质,根据图象平移,就能正确写出该运动员应该跳多高。让学生经历和体验图形平移的变化过程,引导学生感悟知识的生成、发展和变化.数形结合思想是一种重要的数学思想。本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。(3)思维激活体验成功:某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园,花园的一边靠墙,另三边用总长为40m的栅栏围成(如图所示).若设花园的(m),花园的面积为(m).(1)求与之间的函数关系式,并写出自变量的取值范围;(2)满足条件的花园面积能达到200m吗?若能,求出此时的值;若不能,说明理由;(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当取何值时,花园的面积最大?最大面积为多少?这道题目不能呆板地应用二次函数的基础知识,而要综合相关知识,以达到能力提升之目的.这种函数Y=ax2学生都以为只要一个点的坐标就够了,但这里有两个未知数,就只有列方程组才可以求出所要的未知数的值。在前面的探究题的基础上,学生能够独立完成,旨在让学生能够开动脑筋,积极思考,让学生能够"跳一跳,才够得到"。希望学生能将知识转化为技能。(4)聚焦中考例1.有一种螃蟹,从海上捕获后不放养,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价是每千克20元.(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额Q元,写出Q关于x的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:(1)市场价每天上升1元,则P=30+x;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可设利润为w元,用函数性质解决.答案:(1)P=30+x.(2)Q=(30+x)(1000-10x)+20·10x=-10x2+900x+30000.(3)设利润为w元,则w=(-10x2+900x+30000)-30·1000-400x=-10(x-25)2+6250.∵-10<0,∴当x=25时,w有最大值,最大值为6250.答:经销商将这批蟹放养25天后出售,可获得最大利润.例2.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是__________.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m,则A(0,)、B(,)、C(,),把A、B的坐标值代入y=ax2+c中,得a=,,所以.答案:2让学生先自主分析,在学生分析过程中,对学生进行学法引导,引导学生先了解二次函数的基本性质,并学会从实际问题中抽象出二次函数的模型,借助二次函数的性质来解决这类实际应用题。让每一个学生获得成功,感受成功的喜悦。同时引导学生对学习内容进行梳理,将知识系统化,条理化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。(5)跟踪训练1.某商场销售一批名牌衬衫,平均每天可售出20件,进价是每件80元,售价是每件120元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降低1元,商场平均每天可多售出2件,但每件最低价不得低于108元.⑴若每件衬衫降低x元(x取整数),商场平均每天盈利y元,试写出y与x之间的函数关系式,并写出自变量x的取值范围.⑵每件衬衫降低多少元时,商场每天(平均)盈利最多?2.(2012o菏泽)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件) … 20 30 40 50 60 …每天销售量(y件) … 500 400 300 200 100 …(1)把上表中x、y的各组对应值作为点的坐标,猜想y与x的函数关系,并求出函数关系式。(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?(6)方法与小结把"反馈---调节"贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.(7)作业设计:(见课件)课外作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具前瞻性,可引导学生进行自学探究设计理念本节课的设计,我以学生活动为主线,通过"观察、分析、探索、交流"等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。学生在活动中可以体验到分析数学问题的快乐,丰富数学活动的经历和积累数学分析的经验;学生在"自主探究"、"合作交流"、"勇于尝试"中可以体验到知识的深化和成功的喜悦;学生在"合作与交流"中提升自我的价值。在教材处理上,我对教学内容进行了合理的加工和改进,使教学符合学生的认知规律。本节教学过程,环环相扣,紧密联系,体现了让学生成为行为主体即"动手实践、自主探索、合作交流"的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。