资源资源简介:
2016年广东省揭阳市揭西县中考数学一模试卷含答案解析2016年广东省揭阳市揭西县中考数学一模试卷一、选择题(每小题3分,共30分)1.﹣6的绝对值等于()A.﹣6 B.6 C.﹣ D.2.下列计算正确的是()A.(a5)2=a10 B.x16÷x4=x4 C.2a2+3a2=6a4 D.b3ob3=2b33.下列图形既是中心对称又是轴对称图形的是()A. B. C. D.4.抛物线y=﹣(x+2)2﹣5的顶点坐标是()A.(﹣2,5) B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)5.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:66.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°7.不等式组的解集在数轴上表示正确的是()A. B. C. D.8.如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A. B.2 C. D.9.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.410.某市2014年国内生产总值(GDP)比2013年增长了12%,由于受到国际贸易的影响,预计2015年比2014年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=(1+x%)2C.12%+7%=2x% D.(1+12%)(1+7%)=2(1+x%)二、填空题(每小题4分,共24分,请将下列各题的正确答案填写在答卷相应的位置上)11.中国的陆地面积约为9600000km2,把9600000用科学记数法表示为.12.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=.13.如果实数x,y满足方程组,则x2﹣y2的值为.14.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.16.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为.三.解答题(一)(每小题6分,共18分)17.计算:.18.先化简,再求值:÷,其中x=﹣3.19.如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的圆中,求出劣弧的长l.四.解答题(二)(每小题7分,共21分)20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).(1)求一次函数的表达式;(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.22.如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.三、解答题(三)(每小题9分,共27分)23.某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?24.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.25.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2016年广东省揭阳市揭西县中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣6的绝对值等于()A.﹣6 B.6 C.﹣ D.【考点】绝对值.【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣6|=6,故选:B.2.下列计算正确的是()A.(a5)2=a10 B.x16÷x4=x4 C.2a2+3a2=6a4 D.b3ob3=2b3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方、同底数幂的乘法、同类项和同底数幂的除法计算即可.【解答】解:A、(a5)2=a10,正确;B、x16÷x4=x12,错误;C、2a2+3a2=5a2,错误;D、b3ob3=b6,错误;故选A3.下列图形既是中心对称又是轴对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.4.抛物线y=﹣(x+2)2﹣5的顶点坐标是()A.(﹣2,5) B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)【考点】二次函数的性质.【分析】根据抛物线的顶点式求得顶点坐标即可判断.【解答】解:由y=﹣(x+2)2﹣5可知抛物线的顶点是(﹣2,﹣5),故选C.5.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6【考点】位似变换.【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.6.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°【考点】切线的性质.【分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.7.不等式组的解集在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】解:解不等式①得:x≥﹣2,解不等式②得:x<4,故不等式组的解集是:﹣2≤x<4.故选B.8.如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A. B.2 C. D.【考点】解直角三角形;菱形的性质.【分析】在直角三角形ADE中,cosA=,求得AD,AE.再求得DE,即可得到tan∠DBE=.【解答】解:设菱形ABCD边长为t.∵BE=2,∴AE=t﹣2.∵cosA=,∴.∴=.∴t=5.∴AE=5﹣2=3.∴DE==4.∴tan∠DBE===2.故选B.9.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.10.某市2014年国内生产总值(GDP)比2013年增长了12%,由于受到国际贸易的影响,预计2015年比2014年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=(1+x%)2C.12%+7%=2x% D.(1+12%)(1+7%)=2(1+x%)【考点】由实际问题抽象出一元二次方程.【分析】设2014年与2015年这两年的年平均增长率为x,根据题意可得:2013年的GDP×(1+平均增长率)2=2015年GDP,据此列方程.【解答】解:设2014年与2015年这两年的年平均增长率为x,由题意得,(1+12%)(1+7%)=(1+x%)2.故选B.二、填空题(每小题4分,共24分,请将下列各题的正确答案填写在答卷相应的位置上)11.中国的陆地面积约为9600000km2,把9600000用科学记数法表示为9.6×106.【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9600000用科学记数法表示为9.6×106.故答案为9.6×106.12.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=2.【考点】反比例函数与一次函数的交点问题.【分析】直接利用图象上点的坐标性质进而代入求出即可.【解答】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=2,k=2,故答案为:2.13.如果实数x,y满足方程组,则x2﹣y2的值为﹣.【考点】解二元一次方程组;平方差公式.【分析】方程组第二个方程变形求出x+y的值,原式利用平方差公式化简,将各自的值代入计算即可求出值.【解答】解:方程组第二个方程变形得:2(x+y)=5,即x+y=,∵x﹣y=﹣,∴原式=(x+y)(x﹣y)=﹣,故答案为:﹣14.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.16.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为1.【考点】正方形的性质;全等三角形的判定与性质;角平分线的性质.【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH/CO,然后证明△CON∽△CHM,再利用相似比可计算出ON的长【解答】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案为1.三.解答题(一)(每小题6分,共18分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用算术平方根的定义计算即可得到结果.【解答】解:原式=﹣1+4×﹣2﹣1+3=+1.18.先化简,再求值:÷,其中x=﹣3.【考点】分式的化简求值.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=o=,当x=﹣3时,原式=.19.如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的圆中,求出劣弧的长l.【考点】作图-复杂作图;弧长的计算.【分析】(1)使以O为圆心的圆经过A、B、C三点,即做三角形的外接圆,因为△ABC为直角三角形,所以作斜边的中点,以该点为圆心OA为半径作圆即可;(2)由,∠ACB=90°,AC=1,AB=2,易得∠B=30°,∠A=60°,∠BOC=120°,由弧长计算公式得出结论.【解答】解:(1)如图所示,⊙O即为所求;(2)∵AC=1,AB=2,∴∠B=30°,∠A=60°,∴∠BOC=120°,∴l==四.解答题(二)(每小题7分,共21分)20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).(1)求一次函数的表达式;(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A与B坐标分别代入反比例解析式求出m与n的值,确定出A与B坐标,再将两点代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)由A与B的横坐标,利用函数图象即可求出满足题意x的范围.【解答】解:(1)将A(m,3),B(﹣3,n)分别代入反比例解析式得:3=,n=,解得:m=2,n=﹣2,∴A(2,3),B(﹣3,﹣2),将A与B代入一次函数解析式得:,解得:,则一次函数解析式为y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴由函数图象得:反比例函数值大于一次函数值的自变量x的取值范围为x<﹣3或0<x<2.22.如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.【考点】菱形的性质;矩形的判定;解直角三角形.【分析】(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.【解答】(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,∴AC⊥BD,∵BE∥AC,CE∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC是矩形;(2)解:∵菱形ABCD的周长是4,∴AB=BC=AD=DC=,∵tanα=,∴设CO=x,则BO=2x,∴x2+(2x)2=()2,解得:x=,∴四边形OBEC的面积为:×2=4.三、解答题(三)(每小题9分,共27分)23.某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【分析】(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,根据"同样用6m材料制成甲盒的个数比制成乙盒的个数少2个",列出方程,即可解答;(2)根据所需要材料的总长度l=甲盒材料的总长度+乙盒材料的总长度,列出函数关系式;再根据"甲盒的数量不少于乙盒数量的2倍"求出n的取值范围,根据一次函数的性质,即可解答.【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.24.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.【考点】切线的性质;解直角三角形.【分析】(1)本题可连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果;(2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:由(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD==,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.25.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【考点】二次函数综合题.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.2016年5月28日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。