资源资源简介:
免费【真题】2017年株洲市中考数学试卷含分类汇编解析2017年湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1.计算a2oa4的结果为()A.a2 B.a4 C.a6 D.a82.如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对3.如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41° B.49° C.51° D.59°4.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b5.如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145° B.150° C.155° D.160°6.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形 B.正方形 C.正五边形 D.正六边形7.株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为() 9:00﹣10:00 10:00﹣11:00 14:00﹣15:00 15:00﹣16:00进馆人数 50 24 55 32出馆人数 30 65 28 45A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:008.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.) B.) C.) D.)9.如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()21世纪教育网版权所有A.一定不是平行四边形 B.一定不是中心对称图形C.可能是轴对称图形 D.当AC=BD时它是矩形10.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()2-1-c-n-j-yA.5 B.4 C. D.二、填空题(每小题3分,满分24分)11.如图示在△ABC中∠B=.12.分解因式:m3﹣mn2=.13.分式方程﹣=0的解为.14.已知"x的3倍大于5,且x的一半与1的差不大于2",则x的取值范围是.15.如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.16.如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.17.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=.21教育名师原创作品18.如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.三、解答题(本大题共有8个小题,满分66分)19.计算:+20170×(﹣1)﹣4sin45°.20.化简求值:(x﹣)o﹣y,其中x=2,y=.21.某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).22.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.23.如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.24.如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.25.如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).26.已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.2017年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.计算a2oa4的结果为()A.a2 B.a4 C.a6 D.a8【考点】46:同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:原式=a2+4=a6.故选C.2.如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对【考点】13:数轴;15:绝对值.【分析】根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.【解答】解:由数轴可得,点A表示的数是﹣2,|﹣2|=2,故选A.3.如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41° B.49° C.51° D.59°【考点】JA:平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∴α=49°,故选B.4.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【考点】C2:不等式的性质.【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.5.如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145° B.150° C.155° D.160°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x°,∠B=2x°,∠C=3x°,∴6x=180,∴x=30,∵∠BAD=∠B+∠C=5x=150°,故选B.6.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形 B.正方形 C.正五边形 D.正六边形【考点】MM:正多边形和圆.【分析】根据正多边形的中心角的度数即可得到结论.【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选A.7.株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为() 9:00﹣10:00 10:00﹣11:00 14:00﹣15:00 15:00﹣16:00进馆人数 50 24 55 32出馆人数 30 65 28 45A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00【考点】VA:统计表.【分析】直接利用统计表中人数的变化范围得出馆内人数变化最大时间段.【解答】解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,故选:B.8.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.) B.) C.) D.)【考点】X6:列表法与树状图法.【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.【出处:21教育名师】【解答】解:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率==.故选D.9.如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()【来源:21cnj*y.co*m】A.一定不是平行四边形 B.一定不是中心对称图形C.可能是轴对称图形 D.当AC=BD时它是矩形【考点】LN:中点四边形;L6:平行四边形的判定;LC:矩形的判定;P3:轴对称图形.【分析】先连接AC,BD,根据EF=HG=AC,EH=FG=BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形,故选:C.10.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()【版权所有:21教育】A.5 B.4 C. D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D二、填空题(每小题3分,满分24分)11.如图示在△ABC中∠B=25°.【考点】KN:直角三角形的性质.【分析】由直角三角形的两个锐角互余即可得出答案.【解答】解:∵∠C=90°,∴∠B=90°﹣∠A=90°﹣65°=25°;故答案为:25°.12.分解因式:m3﹣mn2=m(m+n)(m﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式m,再运用平方差公式分解.【解答】解:m3﹣mn2,=m(m2﹣n2),=m(m+n)(m﹣n).13.分式方程﹣=0的解为x=﹣.【考点】B3:解分式方程.【分析】根据解方式方程的步骤一步步求解,即可得出x的值,将其代入原方程验证后即可得出结论.【解答】解:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣.经检验,x=﹣是原方程的解.故答案为:x=﹣.14.已知"x的3倍大于5,且x的一半与1的差不大于2",则x的取值范围是<x≤6.【考点】C6:解一元一次不等式.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.15.如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=80°.【考点】M5:圆周角定理.【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.【解答】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为:80°.16.如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为π.【考点】F9:一次函数图象与几何变换;O4:轨迹.【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0,),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算.21cnjyvvvvv【解答】解:当y=0时,x+=0,解得x=﹣1,则A(﹣1,0),当x=0时,y=x+=,则B(0,),在Rt△OAB中,∵tan∠BAO==,∴∠BAO=60°,∴AB==2,∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度==π.故答案为π.17.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=﹣.2·1·c·n·j·y【考点】G6:反比例函数图象上点的坐标特征.【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,相比即可.21教育网【解答】解:如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=(x>0)的图象上,∴k1=aoa=,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=(x>0)的图象上,∴k2=﹣3aa=﹣3,∴=﹣;故答案为:﹣.18.如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.21·世纪*教育网【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解.21*cnjy*com【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,∵开口向上,∴a>0;∵对称轴在y轴右侧,∴﹣>0,∴﹣>0,∴a﹣2<0,∴a<2;∴0<a<2;∴①正确;∵抛物线与y轴交于点B(0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x轴交于点A(﹣1,0),∴a﹣b﹣2=0,无法得到0<a<2;②﹣1<b<0,故①②错误;∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,∴二次函数y=ax2+bx+c的对称轴为y=,∴x2=2>﹣1,故④正确.故答案为:①④.三、解答题(本大题共有8个小题,满分66分)19.计算:+20170×(﹣1)﹣4sin45°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.【解答】解:+20170×(﹣1)﹣4sin45°=2+1×(﹣1)﹣4×=2﹣1﹣2=﹣1.20.化简求值:(x﹣)o﹣y,其中x=2,y=.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分后计算得到最简结果,把x与y的值代入计算即可求出值.www.21-cn-jyvvvvv【解答】解:原式=o﹣y=﹣=﹣,当x=2,y=时,原式=﹣.21.某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:www-2-1-cnjy-com①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).【考点】VC:条形统计图;V5:用样本估计总体;X4:概率公式.【分析】①由图知1人6秒,3人7秒,小于8秒的爱好者共有4人,进入下一轮角逐的人数比例为4:30;②因为其他赛区情况大致一致,所以进入下一轮的人数为:600×A区进入下一轮角逐的人数比例;③由完成时间的平均值和A区30人,得到关于a、b的二元一次方程组,求出a、b,得到完成时间8秒的爱好者的概率.【解答】解:①A区小于8秒的共有3+1=4(人)所以A区进入下一轮角逐的人数比例为:=;②估计进入下一轮角逐的人数为600×=80(人);③因为A区域爱好者完成时间的平均值为8.8秒,所以(1×6+3×7+a×8+b×9+10×10)÷30=8.8化简,得8a+9b=137又∵1+3+a+b+10=30,即a+b=16所以解得a=7,b=9所以该区完成时间为8秒的爱好者的概率为.22.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【考点】S8:相似三角形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.23.如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】①在Rt△AHP中,由tan∠APH=tanα=,即可解决问题;②设BC⊥HQ于C.在Rt△BCQ中,求出CQ==1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH﹣PC计算即可;【解答】解:①在Rt△AHP中,∵AH=500,由tan∠APH=tanα===2,可得PH=250米.∴点H到桥左端点P的距离为250米.②设BC⊥HQ于C.在Rt△BCQ中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米,∵PQ=1255米,∴CP=245米,∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB为5米.24.如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=oPAoPB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA﹣S△PAB可得答案;(2)将(1)中所得解析式配方求得wmax=,代入T=wmax+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=oPAoPB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴wmax=,则T=wmax+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,Tmin=.25.如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BDoCG=×2×2=2.26.已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.21·cn·jy·com【考点】HF:二次函数综合题;H3:二次函数的性质.【分析】①二次函数y=﹣x2+bx+c+1的对称轴为x=,即可得出答案;②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),y由二次函数的图象与x轴相切且c=b2﹣2b,得出方程组,求出b即可;③由圆周角定理得出∠AMB=90°,证出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OAoOB,由二次函数的图象与x轴的交点和根与系数关系得出OA=﹣x1,OB=x2,x1+x2,=b,x1ox2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,证明△BDE∽△BOM,△AOM∽△ADF,得出,,得出OB=4OA,即x2=﹣4x1,由x1ox2=﹣(c+1)=﹣1,得出方程组,解方程组求出b的值即可.【来源:21·世纪·教育·网】【解答】解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=b2﹣2b,∴,解得:b=2+或b=2﹣,∴b为2+或2﹣时,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OAoOB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1ox2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1ox2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.2017年7月12日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。