资源资源简介:
免费2018年湖州市长兴县中考数学一模试卷含答案试卷分析解析2018年浙江省湖州市长兴县中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知2a=3b,则a:b的值是()A. B. C. D.2.(3分)任意写出一个偶数和一个奇数,则这两数之和是偶数的概率是()A.1 B. C.0 D.无法确定3.(3分)把抛物线y=x2﹣1先向右平移2个单位,再向下平移2个单位,可得抛物线()A.y=(x+2)2+1 B.y=(x+2)2﹣3 C.y=(x﹣2)2+1 D.y=(x﹣2)2﹣34.(3分)一条弧所对的圆周角的度数是36°,则这条弧所对的圆心角的度数是()A.72° B.54° C.36° D.18°5.(3分)在Rt△ABC中,∠C=90°,a=3,c=4,则sinA=()A. B. C. D.6.(3分)如果一条直线与圆有公共点,那么该直线与圆的位置关系是()A.相交 B.相离 C.相切 D.相交或相切7.(3分)一本书的宽与长之比为黄金比,书的宽为14cm,则它的长为()A.(7+7)cm B.(21﹣7)cm C.(7﹣7)cm D.(7﹣21)cm8.(3分)如图,PA,PB分别切⊙O于A,B两点,已知圆的半径为4,劣弧的度数为120°,Q是圆上的一动点,则PQ长的最大值是()A.12 B.12 C.8 D.49.(3分)抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是()21世纪教育网版权所有A.m<n B.m≤n C.m>n D.m≥n10.(3分)如图,将边长为3的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为()A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)抛物线y=﹣2x2+4x+m的对称轴是直线.12.(4分)如图,转盘中灰色扇形的圆心角为90°,白色扇形的圆心角为270°,让转盘自由转动一次,指针落在白色区域的概率是.13.(4分)一圆锥的底面半径为3,它的母线长为4,则它的侧面积S侧=.14.(4分)一个扇形的面积为15π,圆心角为216°,那么它的弧长为.15.(4分)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,DF∥AC,且=,已知四边形DECF的面积为m,则△ABC的面积为.21教育网16.(4分)如图,△ABC是一块直角三角框,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角框内部,将圆形纸片沿着三角框的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,则圆心O运动的路径长为.21cnjyvvvvv三、解答题(共66分)17.(6分)计算:tan30°+sin60°﹣2cos245°18.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.19.(8分)已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一点,AG与DC的延长线交于点F.21·cn·jy·com(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.20.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)21.(8分)如图,在四边形ABCD中,BC=CD=2,AB=3,AB⊥BC,CD⊥BC.(1)求tan∠BAD;(2)把四边形ABCD绕直线CD旋转一周,求所得几何体的表面积.22.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),BC=6,求∠ABN的度数;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.23.(10分)我市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计307元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.www.21-cn-jyvvvvv(1)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式,并写出自变量x的取值范围.(2)李经理将这批野生茵存放多少天后出售可获得最大利润W元?(利润=销售总额﹣收购成本﹣各种费用)24.(12分)已知:二次函数y=ax2+2ax﹣4(a≠0)的图象与x轴交于点A,B(A点在B点的左侧),与y轴交于点C,△ABC的面积为12.(1)求二次函数图象的对称轴与它的解析式;(2)点D在y轴上,当以A、O、D为顶点的三角形与△BOC相似时,求点D的坐标;(3)点D的坐标为(﹣2,1),点P在二次函数图象上,∠ADP为锐角,且tan∠ADP=2,求点P的横坐标.2·1·c·n·j·y2018年浙江省湖州市长兴县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:两边都除以2b得,=.故选:B.2.【解答】解:∵一个奇数与一个偶数的和为奇数,∴任意写出一个偶数和一个奇数,两数之和是偶数的概率为0,故选:C.3.【解答】解:把抛物线y=x2﹣1先向右平移2个单位,再向下平移2个单位,得抛物线解析式为y=(x﹣2)2﹣3.【来源:21·世纪·教育·网】故选:D.4.【解答】解:由圆周角定理得,这条弧所对的圆心角的度数=2×这条弧所对的圆周角的度数=72°,故选:A.5.【解答】解:∵∠C=90°,a=3,c=4,∴sinA==.故选:B.6.【解答】解:∵一条直线与圆有公共点,∴公共点可能是1个或2个,∴这条直线与圆的位置关系是:相切或相交.故选:D.7.【解答】解:由黄金比值可知,这本书的长==(7+7)cm,故选:A.8.【解答】解:当PQ是直径时,PQ长取最大值,连接OA,∵劣弧的度数为120°,∴∠AOP=60°,∵圆的半径为4,∴AO=4,∴OP=8,∴PQ=8+4=12,故选:B.9.【解答】解:∵y=ax2﹣4ax+4a﹣1=a(x﹣2)2﹣1,∴此抛物线对称轴为x=2,∵抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,∴当ax2﹣4ax+4a﹣1=0时,△=(﹣4a)2﹣4a×(4a﹣1)>0,得a>0,∵x1<2<x2,x1+x2<4,∴2﹣x1>x2﹣2,∴m>n,故选:C.10.【解答】解:设CM=x,设HC=y,则BH=HM=3﹣y,故y2+x2=(3﹣y)2,整理得:y=﹣x2+,即CH=﹣x2+,∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,由题意可得:ED=1.5,DM=3﹣x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=1,x2=3(不合题意),∴CM=1,如图,连接BM,过点G作GP⊥BC,垂足为P,则BM⊥GH,∴∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==.故选:A.二、填空题(本大题共6小题,每小题4分,共24分)11.【解答】解:对称轴为直线x=﹣,故答案为:x=112.【解答】解:由图得:红色扇形的圆心角为90°,白色扇形的圆心角是270°,∴白色扇形的面积:红色扇形的面积=3:1,指针落在白色区域的概率是,故答案为:13.【解答】解:∵圆锥的底面半径是3,∴圆锥的底面周长为:2πr=2π×3=6π,∵圆锥的底面周长等于侧面展开扇形的弧长,∴侧面展开扇形的弧长为6π,∵母线长为4,∴圆锥的侧面积为:lr=×6π×4=12π.故答案为:12π.14.【解答】解:设扇形的半径为R,根据题意得15π=,∴R2=25,∵R>0,∴R=5.∴扇形的弧长==6π.故答案为:6π15.【解答】解:∵DE∥BC,DF∥AC,∴△ADE∽△ABC,△DBF∽△ABC.∵=,∴=,=,∴S△ADE=()2oS△ABC=S△ABC,S△DBF=()2oS△ABC=S△ABC.∵S四边形DECF=S△ABC﹣S△ADE﹣S△DBF=S△ABC=m,∴S△ABC=m.故答案为:m.16.【解答】解:如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC=,AB=2BC=18,∠ABC=60°,∴C△ABC=9+9+18=27+9,∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴,即,∴=15+,即圆心O运动的路径长为15+.故答案为:15+.三、解答题(共66分)17.【解答】解:原式=×+×﹣2×()2=1+﹣1=.18.【解答】解:列表如下: a b ca (a,a) (b,a) (c,a)b (a,b) (b,b) (c,b)c (a,c) (b,c) (c,c)所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P==.19.【解答】(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB,∴DE=EC=4,在Rt△OEC中,∵OC2=OE2+EC2,∴R2=(R﹣2)2+42,解得R=5.(2)证明:连接AD,∵弦CD⊥AB∴=,∴∠ADC=∠AGD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.20.【解答】解:如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,过点E作EG⊥AB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4otan37°,则AB=AG+BG=4otan37°+3.5=3+3.5,故旗杆AB的高度为(3+3.5)米.21.【解答】解:(1)过点D作DE⊥AB,tan∠BAD=,(2)侧面积:4π×3=12π,底面积=4π,凹圆锥侧面积=,所以表面积=(16+2)π.22.【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∴AM=MC=2,∵AN是⊙M的直径,∴∠ACN=∠BCN=90°,∴△ACN∽△BNC,∵BC=6,∴AC=2,∴AB=2AN=8,∴∠ABN=30°,(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.23.【解答】解:(1)由题意得P与x之间的函数关系式P=(x+30)(1000﹣3x)=﹣3x2+910x+30000(1≤x≤160,且x为整数);(2)由题意得w=(﹣3x2+910x+30000)﹣30×1000﹣307x=﹣3x2+603x它的图象的对称轴为直线x=,故当x=100或101时,w最大=30300,24.【解答】解:(1)该二次函数的对称轴是:直线x=﹣=﹣1;(1分)∵当x=0时,y=﹣4,∴C(0,﹣4),∴OC=4,连接AC,BC,∵S△ABC=ABoOC=12,AB=6,∵A、B关于直线x=﹣1对称,∴A(﹣4,0),B(2,0),把B(2,0)代入y=ax2+2ax﹣4中得:4a+4a﹣4=0,a=,∴二次函数的解析式为:y=x2+x﹣4;(2分)(2)如图1,∵∠BOC=∠AOD=90°,且OB=2,OC=OA=4,∴=,分两种情况:①当△AOD∽△COB时,=2,∴OD=2,即D1(0,2)或D2(0,﹣2);②当△AOD∽△BOC时,,∴OD=2OA=8,即D3(0,8)或D4(0,﹣8);综上所述,点D的坐标为(0,2)或(0,﹣2)或(0,8)或(0,﹣8);(6分)(3)如图2,过D作DF⊥x轴于F,分两种情况:①当点P在直线AD的下方时,由(1)得:A(﹣4,0),∵D(﹣2,1),∴AF=2,DF=1,在Rt△ADF中,∠AFD=90°,得tan∠ADF==2,延长DF交抛物线于P1,则P1就是所求,∴P1(﹣2,﹣4);(8分)②当点P在直线AD的上方时,延长P1A至点G,使得AG=AP1,连接DG,作GH⊥x轴于H,∴△GHA≌△P1FA,∴HA=AF,GH=P1F,∵A(﹣4,0),P1(﹣2,﹣4),∴G(﹣6,4),易得DG的解析式为:y=﹣x﹣,在△ADP1中,DA=,DP1=5,AP1=2,∴,∴∠DAP1=90°,∴DA⊥GP1,∴DG=DP1,∴∠ADG=∠ADP1,∴tan∠ADG=tan∠ADP1=2,设DG与抛物线的交点为P2,则P2点为所求,设P2(x,+x﹣4),代入DG的解析式中,﹣x﹣=+x﹣4,解得x=,∵P2点在第二象限,∴P2点的横坐标为x=(舍正)(11分)综上,P点的横坐标为﹣2或.(12分)
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。