资源资源简介:
曲靖市师宗县彩云中学2016年中考数学第一次模拟试卷含答案解析2016年云南省曲靖市师宗县彩云中学中考数学一模试卷一、选择题1.﹣5的相反数的倒数是()A. B.﹣5 C.﹣ D.52.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.3.下列函数中,自变量的取值范围是x≥2的是()A.y=x﹣2 B. C. D.4.下列几何体中,其主视图不是中心对称图形的是()A. B. C. D.5.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C. D.6.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15° B.30° C.45° D.60°7.下列说法正确的是()A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定8.要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15 B.x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=15二、填空题9.写出一个以2,﹣1为解的一元二次方程.10.分解因式:a3b﹣9ab3=.11.己知m是关于x的方程x2﹣2x﹣7=0的一个根,则2(m2﹣2m)=.12.一个汽车牌在水中的倒影为,则该车牌照号码.13.不等式组的解集是.14.点E在?ABCD的BC边的延长线上,AE交CD于点F,CE:AD=1:3,则△CEF与△BEA的面积之比是.15.分式方程:的解为.16.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为度.三、解答题17.计算:.18.先化简,再求值:,其中a=﹣2.19.甲乙两家商店5月份共盈利5.7万元,分别比4月份增长10%和20%,4月份甲商店比乙商店多盈利1万元.4月份甲乙两家商店各盈利多少万元?20.我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行"一帮一"互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.22.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).23.如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB是菱形.24.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.2016年云南省曲靖市师宗县彩云中学中考数学一模试卷参考答案与试题解析一、选择题1.﹣5的相反数的倒数是()A. B.﹣5 C.﹣ D.5【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,5的倒数是,故选:A.【点评】本题考查了倒数,先求相反数,再求倒数.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列函数中,自变量的取值范围是x≥2的是()A.y=x﹣2 B. C. D.【考点】函数自变量的取值范围.【分析】分别求出四个选项中自变量的取值范围即可求解.【解答】解:A、自变量的取值范围是全体实数;B、自变量的取值范围是x≠2;C、自变量的取值范围是x≥2;D、自变量的取值范围是x>2.故选C.【点评】主要考查了函数自变量的取值范围.确定函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.下列几何体中,其主视图不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;简单几何体的三视图.【分析】先判断出各图形的主视图,然后结合中心对称的定义进行判断即可.【解答】解:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误;故选B.【点评】本题考查了简单几何体的三视图及中心对称的知识,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C. D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.【解答】解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.【点评】本题主要考查二次函数、一次函数和反比例函数的性质,解答本题的关键是熟练掌握各个函数在每个象限内的单调性.6.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15° B.30° C.45° D.60°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EG⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.【点评】本题考查了两直线平行,同旁内角互补的性质,对顶角相等的性质,以及垂直的定义,是基础题.7.下列说法正确的是()A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定【考点】方差;全面调查与抽样调查;算术平均数;众数.【分析】根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.【解答】解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.【点评】本题考查了方差,方差越小数据越稳定是解题关键.8.要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15 B.x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=15【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=15,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.二、填空题9.写出一个以2,﹣1为解的一元二次方程x2﹣x﹣2=0.【考点】根与系数的关系.【专题】开放型.【分析】此题给了一元二次方程的两个根,可以应用根与系数的关系求方程.如:2+(﹣1)=1,2×(﹣1)=﹣2,可得方程为x2﹣x﹣2=0.【解答】解:如:x2﹣x﹣2=0.【点评】此题考查了学生对一元二次方程根的理解.如果给出一元二次方程的两个根,则可采用根与系数的关系求得方程.10.分解因式:a3b﹣9ab3=ab(a+3b)(a﹣3b).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:a3b﹣9ab3,=ab(a2﹣9b2),=ab(a+3b)(a﹣3b).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,分解因式一定要彻底.11.己知m是关于x的方程x2﹣2x﹣7=0的一个根,则2(m2﹣2m)=14.【考点】一元二次方程的解.【分析】把x=m代入已知方程来求(m2﹣2m)的值.【解答】解:把x=m代入关于x的方程x2﹣2x﹣7=0,得m2﹣2m﹣7=0,则m2﹣2m=7,所以2(m2﹣2m)=2×7=14.故答案是:14.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.一个汽车牌在水中的倒影为,则该车牌照号码M17936.【考点】镜面对称.【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.【解答】解:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣M17936∴该车的牌照号码是M17936.故答案为:M17936.【点评】此题主要考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形.13.不等式组的解集是x<﹣6.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<﹣3,由②得,x<﹣6,故此不等式组的解集为:x<﹣6.故答案为:x<﹣6.【点评】本题考查的是解一元一次不等式组,熟知"同大取大;同小取小;大小小大中间找;大大小小找不到"的原则是解答此题的关键.14.点E在?ABCD的BC边的延长线上,AE交CD于点F,CE:AD=1:3,则△CEF与△BEA的面积之比是.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】证明△CEF∽△BEA,然后根据相似三角形的面积的比等于相似比的平方即可求解.【解答】解:∵平行四边形ABCD中,BC=AD,又∵CE:AD=1:3,∴CE:BE=1:4.∵平行四边形ABCD中,CD∥AB,∴△CEF∽△BEA,∴=()2=()2=.故答案是:.【点评】本题考查了相似三角形的判定与性质,相似三角形的面积的比等于相似比的平方.15.分式方程:的解为x=6.【考点】解分式方程.【分析】去分母化为整式方程后求解即可.【解答】解:方程两边同时乘以(2+x)(2﹣x)得:x(2﹣x)﹣(2+x)(2﹣x)=8,整理得:2x﹣4=8,解得:x=6,检验:当x=6时,(2+x)(2﹣x)≠0,所以方程的解为x=6.【点评】本题考查了分式方程的解法,解题的关键是能够确定最简公分母并去分母化为整式方程,注意一定要检验.16.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为45度.【考点】圆周角定理.【专题】计算题.【分析】∠AOB与∠APB为所对的圆心角和圆周角,已知∠AOB=90°,利用圆周角定理求解.【解答】解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.故答案为:45.【点评】本题考查了圆周角定理的运用.关键是确定同弧所对的圆心角和圆周角,利用圆周角定理.三、解答题17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项先利用平方根的定义化简,再计算除法运算,最后一项先计算零指数幂及特殊角的三角函数值,再计算乘法运算,即可得到结果.【解答】解:原式=3﹣2÷4+1×=3﹣+=3.【点评】此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【专题】计算题.【分析】首先把括号里因式通分,然后进行约分化简,最后代值计算.【解答】解:原式=o=2a+4;当a=﹣2时,原式=.【点评】本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键.19.甲乙两家商店5月份共盈利5.7万元,分别比4月份增长10%和20%,4月份甲商店比乙商店多盈利1万元.4月份甲乙两家商店各盈利多少万元?【考点】二元一次方程组的应用.【分析】设4月份甲商店盈利x万元,乙商店盈利y万元,根据4月份甲商店比乙商店多盈利1万元,5月份甲乙两家共盈利5.7万元,列方程组求解.【解答】解:设4月份甲商店盈利x万元,乙商店盈利y万元,由题意得,,解得:.答:4月份甲商店盈利3万元,乙商店盈利2万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行"一帮一"互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行"一帮一"互助学习,可以将A类与D类学生分为以下几种情况: 男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.【考点】游戏公平性;列表法与树状图法.【专题】阅读型;方案型.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)大双的设计游戏方案不公平.可能出现的所有结果列表如下:A袋积B袋 1 2 34 4 8 125 5 10 15或列树状图如下:∴P(大双得到门票)=P(积为偶数)==,P(小双得到门票)=P(积为奇数)=,∵≠,∴大双的设计方案不公平.(2)小双的设计方案不公平.参考:可能出现的所有结果列树状图如下:.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【专题】计算题;几何图形问题.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AHotan∠CAH,∴CH=AHotan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.【点评】命题立意:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB是菱形.【考点】垂径定理;等边三角形的判定与性质;菱形的判定;圆心角、弧、弦的关系.【专题】证明题.【分析】连OC,由C是的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱形的判定方法即可得到结论.【解答】证明:连OC,如图,∵C是的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定.24.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.【考点】二次函数综合题.【专题】压轴题;数形结合.【分析】(1)已知直线AB的解析式,首先能确定A、B点的坐标,然后利用待定系数法确定a、b的值;若设直线AB与y轴的交点为E,E点坐标易知,在Rt△AEO中,能求出sin∠AEO,而∠AEO=∠ACP,则∠ACP的正弦值可得.(2)①已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△PCD中,根据(1)中∠ACP的正弦值,即可求出PD的表达式,再根据所得函数的性质求出PD长的最大值.②在表达△PCD、△PBC的面积时,若都以PC为底,那么它们的面积比等于PC边上的高的比.分别过B、D作PC的垂线,首先求出这两条垂线段的表达式,然后根据题干给出的面积比例关系求出m的值.【解答】解:(1)由x+1=0,得x=﹣2,∴A(﹣2,0).由x+1=3,得x=4,∴B(4,3).∵y=ax2+bx﹣3经过A、B两点,∴∴,则抛物线的解析式为:y=x2﹣x﹣3,设直线AB与y轴交于点E,则E(0,1).∵PC∥y轴,∴∠ACP=∠AEO.∴sin∠ACP=sin∠AEO===.(2)①由(1)知,抛物线的解析式为y=x2﹣x﹣3.则点P(m,m2﹣m﹣3).已知直线AB:y=x+1,则点C(m,m+1).∴PC=m+1﹣(m2﹣m﹣3)=﹣m2+m+4=﹣(m﹣1)2+Rt△PCD中,PD=PCosin∠ACP=[﹣(m﹣1)2+]o=﹣(m﹣1)2+∴PD长的最大值为:.②如图,分别过点D、B作DF⊥PC,BG⊥PC,垂足分别为F、G.∵sin∠ACP=,∴cos∠ACP=,又∵∠FDP=∠ACP∴cos∠FDP==,在Rt△PDF中,DF=PD=﹣(m2﹣2m﹣8).又∵BG=4﹣m,∴====.当==时,解得m=;当==时,解得m=.【点评】本题考查了二次函数的应用以及解析式的确定、解直角三角形、图形面积的求法等知识,主要考查学生数形结合思想的应用能力.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。